
Different tools to monitor your Homelab and Network services.

Install Glances to Monitor Open Media Vault Server
Install Uptime Kuma - A fancy self-hosted monitoring tool
Install Umami to Monitor your Website Traffic
Install Netdata to Monitor Debian or Ubuntu servers
Command Line Utilities

Install Bpytop for Monitoring Linux

Monitor Your System with Grafana using Netdata and Prometheus

Monitoring

Glances is a cross-platform system monitoring tool written in Python. It can be installed on pretty
much any Linux system but this is a great tool for monitoring NAS servers like Open Media Vault.
You can see vital information like CPU temps, disk space, RAM and CPU usage and much more.

You can see most of this from the OMV dashboard but I wanted something that could read
temperature sensors for the CPU and this is perfect. Plus, looking at the bright white dashboard on
OMV can be strenuous on the eyes as they do not have a dark mode.

Image not found or type unknown

Usage

Faster refresh

View the web UI.

Did you find this helpful? Subscribe to me on Youtube for more content!

Install Glances to Monitor
Open Media Vault Server

apt install python3

apt install python3-pip

pip3 install glances

glances

glances -t0

glances -t0 -w

https://snip.lol/JipE3/bafEgEbe78/raw.png
https://www.youtube.com/c/GeekedTV

Uptime Kuma is a great way to monitor your self hosted apps and services.

Image not found or type unknown

Monitoring uptime for HTTP(s) / TCP / Ping / DNS Record.
Fancy, Reactive, Fast UI/UX.
Notifications via Telegram, Discord, Gotify, Slack, Pushover, Email (SMTP), and 70+
notification services, click here for the full list.
20 seconds interval.

Paste this docker compose stack into Portainer

Did you find this helpful? Subscribe to me on Youtube for more content!

Install Uptime Kuma - A
fancy self-hosted monitoring
tool

Installation

version: '3.3'

services:

 uptime-kuma:

 image: louislam/uptime-kuma

 container_name: uptime-kuma

 volumes:

 - /docker/uptimekuma:/app/data

 ports:

 - 3001:3001

https://snip.lol/JipE3/qoKIdOjA71/raw.png
https://github.com/louislam/uptime-kuma/issues/284
https://github.com/louislam/uptime-kuma/issues/284
https://www.youtube.com/c/GeekedTV

Image not found or type unknown

Umami is a simple, easy to use, self-hosted web analytics solution. The goal is to provide you with
a friendlier, privacy-focused alternative to Google Analytics and a free, open-sourced alternative to
paid solutions. Umami collects only the metrics you care about and everything fits on a single
page. You can view a live demo here or read more about Umami here.

Install Filebrowser (if you want to cheat and not use CLI)

Paste the following into the schema.postgresql.sql file.

Install Umami to Monitor
your Website Traffic

version: "2.1"

services:

 filebrowser:

 image: hurlenko/filebrowser:latest

 container_name: filebrowser

 environment:

 - FB_BASEURL=/f

 volumes:

 - /:/data

 - /docker/filebrowser:/config

 ports:

 - 8081:8080

 restart: unless-stopped

Create the schema.postgresql.sql file and place it in /docker/umami

schema.postgresql.sql

drop table if exists event;

drop table if exists pageview;

drop table if exists session;

https://umami.thehomelab.wiki/share/vrP11TY7/TheHomelab.wiki
https://umami.is/docs/about

drop table if exists website;

drop table if exists account;

create table account (

 user_id serial primary key,

 username varchar(255) unique not null,

 password varchar(60) not null,

 is_admin bool not null default false,

 created_at timestamp with time zone default current_timestamp,

 updated_at timestamp with time zone default current_timestamp

);

create table website (

 website_id serial primary key,

 website_uuid uuid unique not null,

 user_id int not null references account(user_id) on delete cascade,

 name varchar(100) not null,

 domain varchar(500),

 share_id varchar(64) unique,

 created_at timestamp with time zone default current_timestamp

);

create table session (

 session_id serial primary key,

 session_uuid uuid unique not null,

 website_id int not null references website(website_id) on delete cascade,

 created_at timestamp with time zone default current_timestamp,

 hostname varchar(100),

 browser varchar(20),

 os varchar(20),

 device varchar(20),

 screen varchar(11),

 language varchar(35),

 country char(2)

);

create table pageview (

 view_id serial primary key,

 website_id int not null references website(website_id) on delete cascade,

 session_id int not null references session(session_id) on delete cascade,

 created_at timestamp with time zone default current_timestamp,

 url varchar(500) not null,

 referrer varchar(500)

);

create table event (

 event_id serial primary key,

 website_id int not null references website(website_id) on delete cascade,

 session_id int not null references session(session_id) on delete cascade,

 created_at timestamp with time zone default current_timestamp,

 url varchar(500) not null,

 event_type varchar(50) not null,

 event_value varchar(50) not null

);

create index website_user_id_idx on website(user_id);

create index session_created_at_idx on session(created_at);

create index session_website_id_idx on session(website_id);

create index pageview_created_at_idx on pageview(created_at);

create index pageview_website_id_idx on pageview(website_id);

create index pageview_session_id_idx on pageview(session_id);

create index pageview_website_id_created_at_idx on pageview(website_id, created_at);

create index pageview_website_id_session_id_created_at_idx on pageview(website_id, session_id,

created_at);

create index event_created_at_idx on event(created_at);

create index event_website_id_idx on event(website_id);

create index event_session_id_idx on event(session_id);

insert into account (username, password, is_admin) values ('admin',

'$2b$10$BUli0c.muyCW1ErNJc3jL.vFRFtFJWrT8/GcR4A.sUdCznaXiqFXa', true);

Run the docker stack and install

version: '3'

services:

 umami:

 image: ghcr.io/mikecao/umami:postgresql-latest

Go to your.server.ip.here:3000 and log in using admin as the username and umami as the
password.

https://www.youtube.com/embed/nUjDGxazkOQ?ab_channel=Geeked

Did you find this helpful? Subscribe to me on Youtube for more content!

 ports:

 - "3000:3000"

 environment:

 DATABASE_URL: postgresql://umami:umami@db:5432/umami

 DATABASE_TYPE: postgresql

 HASH_SALT: H6ei6O1tdLNxIQLRs4Mw

 depends_on:

 - db

 restart: always

 db:

 image: postgres:12-alpine

 environment:

 POSTGRES_DB: umami

 POSTGRES_USER: umami

 POSTGRES_PASSWORD: umami

 volumes:

 - /docker/umami/schema.postgresql.sql:/docker-entrypoint-

initdb.d/schema.postgresql.sql:ro

 - /docker/umami/db:/var/lib/postgresql/data

 restart: always

volumes:

 umami-db-data:

Connect to the web UI

Video tutorial

https://www.youtube.com/embed/nUjDGxazkOQ?ab_channel=Geeked
https://www.youtube.com/c/GeekedTV

Netdata is a great way to monitor your Debian based systems and servers. It's feature rich and
packs all the punches any system administrator needs. Installation is a breeze and it can be up and
running in less than 2 or 3 minutes.

Netdata can even be used to monitor Virtual Machines and Containers on a Proxmox server as you
can see in the screenshot below. See the lxc containers on the right side navigation menu.

Image not found or type unknown

A simple one line command. This requires curl to be installed on the system.

To start using Netdata, open a browser and navigate to http://NODE:19999, replacing NODE with
either localhost or the hostname/IP address of a remote node.

Where you go from here is based on your use case, immediate needs, and experience with
monitoring and troubleshooting.

To view CPU temperatures, you will have to install lm sensors. lm-sensors provides a hardware
health monitoring driver for Linux. It's used by system administrators to check the health status of
their hardware. It is also used to monitor the hardware infrastructure in servers and be very
valuable in mission critical applications.

Install Netdata to Monitor
Debian or Ubuntu servers

Install Netdata

apt install curl -y

bash <(curl -Ss https://my-netdata.io/kickstart.sh) -y

Start Using Netdata

Installing lm Sensors

https://snip.lol/JipE3/dODIWodA55/raw.png

Refresh the Netdata web UI and you should see a new section called Sensors. There you can see
the CPU temperatures.

Image not found or type unknown

apt install lm-sensors

https://snip.lol/JipE3/mAfObIpa38/raw.png

Command Line Utilities

Command Line Utilities

Bpytop is amazing. I love this utility for monitoring CPU temps/usage, memory usage, network
throughput and processes. It also has a wonderful display for hard drive usage.

Image not found or type unknown

Just look at how beautiful it is. Click the image above to enlarge.

Make sure python3 is installed. It should be on Debian. If not run

apt install python3-pip

apt install bpytop

open a terminal ans imply type:

Press esc on your keyboard to view and navigate options such as themes and other customizations.

Example video:

Install Bpytop for Monitoring
Linux

Install

Usage

bpytop

https://snip.lol/JipE3/cokoTOZE92/raw.png

Prometheus is quite amazing! Here I show you how to use it to pull metrics from the Netdata API to
display in a custom dashboard with Grafana.

The idea behind this project is to have a custom dashboard that displays only things you really
want to see at a glance. You can choose to dig through the Prometheus Netdata metrics more to
display anything you wish but below is the example I setup for this tutorial.

Prometheus does all the work. The only thing required to be installed on the machine being
monitored is Netdata. No other agents or workers are needed that could utilize more system
memory on your servers. That's the beauty of Prometheus. Rather than coming to your machine to
collect data, Prometheus waits for data to come to it instead, using API calls.

Image not found or type unknown

I chose to host Grafana and Prometheus on their own separate LXCcontainer using Proxmox. You
can use a RPi or any host you wish. I do this so I can use one central host to keep things more
organized. You only need one host for Grafana and Prometheus.

I use a docker stack through Portainer.

Monitor Your System with
Grafana using Netdata and
Prometheus

Netdata is required to be installed on any machine that will be monitored. Please see this
video before moving forward here.

Install Grafana

version: '3.3'

services:

 grafana:

https://www.youtube.com/watch?v=-ILREKzj_YA&ab_channel=Geeked
https://www.youtube.com/watch?v=-ILREKzj_YA&ab_channel=Geeked

Grafana will then be accessible on port 3000. Login with admin/admin then choose a stronger
password.

Image not found or type unknown

Again, I use a docker stack through Portainer.

This will create a folder on your host machine at /docker/prometheus

Prometheus will then be accessible on port 9090.

Image not found or type unknown

 ports:

 - '3000:3000'

 container_name: grafana

 image: grafana/grafana

Install Prometheus

version: '3.3'

services:

 prometheus:

 ports:

 - '9090:9090'

 volumes:

 - '/docker/prometheus:/etc/prometheus'

 image: prom/prometheus

Create the prometheus.yml file
cd /docker/prometheus

touch prometheus.yml

Edit the prometheus.yml file

https://snip.lol/JipE3/GilUsaho86/raw.png

Below is my example prometheus.yml file. You should change the IP to match that of your Netdata
web UI. You should not have to change anything above the pound line, only that in between.

nano /docker/prometheus/prometheus.yml

my global config

global:

 scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1

minute.

 evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.

 # scrape_timeout is set to the global default (10s).

Alertmanager configuration

alerting:

 alertmanagers:

 - static_configs:

 - targets:

 # - alertmanager:9093

Load rules once and periodically evaluate them according to the global

'evaluation_interval'.

rule_files:

 # - "first_rules.yml"

 # - "second_rules.yml"

A scrape configuration containing exactly one endpoint to scrape:

Here it's Prometheus itself.

scrape_configs:

 # The job name is added as a label `job=<job_name>` to any timeseries scraped from this

config.

 - job_name: 'prometheus'

 # metrics_path defaults to '/metrics'

 # scheme defaults to 'http'.

 static_configs:

 - targets: ['localhost:9090']

##

###

If you decide to monitor more than one Netdata instance just copy and paste from each pound line
then edit the job name and target IP.

You can browse the metrics explorer by pressing the small globe icon next to the search bar or use
the metrics I used in the video to start your dashboard. You can see those below.

On the Prometheus webui, copy and paste the following metrics in the finder then copy the query
you wish to display in Grafana.

Image not found or type unknown

System Uptime

 - job_name: 'netdata-scrape'

 metrics_path: '/api/v1/allmetrics'

 params:

 # format: prometheus | prometheus_all_hosts

 # You can use `prometheus_all_hosts` if you want Prometheus to set the `instance` to

your hostname instead of IP

 format: [prometheus]

 #

 # source: as-collected | raw | average | sum | volume

 # default is: average

 #source: [as-collected]

 #

 # server name for this prometheus - the default is the client IP

 # for Netdata to uniquely identify it

 #server: ['prometheus1']

 honor_labels: true

 static_configs:

 - targets: ['192.168.1.13:19999']

##

Prometheus Netdata Metrics

https://snip.lol/JipE3/yUliDOsI32/raw.png

When adding this to Grafana be sure to select "seconds (s)" as the unit of measurement under
Standard options.

CPU Temperature (requires sensors to be installed on the server using lm-sensors)

When adding this to Grafana be sure to select "Celsius (°C)" as the unit of measurement under
Standard options.

CPU Usage

When adding this to Grafana be sure to select "Percent (0-100)" as the unit of measurement under
Standard options.

Memory Used

This was a tricky one. I had to take total memory and subtract the available memory from it to get
an accurate number.

When adding this to Grafana be sure to select "mebibytes" as the unit of measurement under
Standard options.

As you can see, I have 32GB of RAM. I had to play with the numbers and used bpytop to compare. I
was able to get the RAM spot on to match the same output in bpytop.

Image not found or type unknown

Image not found or type unknown

Hard Drive Space

netdata_system_uptime_seconds_average

netdata_sensors_temperature_Celsius_average

netdata_cpu_cpu_percentage_average

31970 - netdata_mem_available_MiB_average{instance="192.168.1.13:19999", job="netdata-scrape"}

netdata_disk_space_GiB_average

https://thehomelab.wiki/books/monitoring/page/install-bpytop-for-monitoring-linux

When adding this to Grafana be sure to select "gibibytes" as the unit of measurement under
Standard options.

If you'd like to look at the JSON for my Grafana dashboard, please view it here.

https://www.youtube.com/embed/uimGcQVRaqI

Did you find this helpful? Subscribe to me on Youtube for more content!

Video Tutorial

https://snip.lol/JipE3/vEsUSeVi17.json
https://www.youtube.com/embed/uimGcQVRaqI
https://www.youtube.com/c/GeekedTV

